THE SYNTHESIS OF SOME NEW DERIVATIVES OF 1,7-DIMETHYLXANTHINE I. M. Ovcharova, E. S. Chaman, and E. S. Golovchinskaya Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 6, p. 1129, 1967 UDC 547.857.4.07 We have synthesized a group of new 8-substituted 1, 7-dimethyl-xanthines which are of interest for biological investigation as very close structural analogs of some 8-substituted theobromine derivatives obtained previously. In particular, we have carried out the conversion of 8-hydroxymethyl-1, 7-dimethixanthine (I) [1] into 8-chloromethyl-1, 7-dimethylxanthine (II) and from this, by heating it for 6 hours with an excess of diethylamine or by condensing it with sodioacetylaminomalonic ester in ethanol we have obtained 8-diethylaminomethyl-1, 7-dimethylxanthine (III) and its hydrochloride (compare [2]) or 8-(β -acetyl-amino- β , β -diethoxycarbonylethyl)-1, 7-dimethylxanthine (IV). The hydrolytic cleavage of the latter, accompanied by partial decarboxylation, led to 1, 7-dimethyl-8-xanthinylalanine (V) (cf. [3]). II: mp 250° — 251° C (decomp., from a mixture of ethanol and dimethylformamide.) Found, %: Cl 15.47; N 24.63. Calculated for $C_8H_9CIN_4O_2$, %: Cl 15.53; N 24.57. III: mp 192°—194° C (from 30% ethanol). Found, %: N 25.77. Calculated for $C_{12}H_{19}N_5O_2$, %: N 26.41. Hydrochloride: mp 260°—262° C (decomp.). Found, %: C1 11.57; N 23.00. Calculated for $C_{12}H_{19}N_5O_2$. 'Hcl. %: C1 11.77; N 23.22. IV: mp 229°—230° C (from ethanol). Found, %: C 50.17; H 5.79; N 17.29. Calculated for $C_{17}H_{23}N_5O_7$, %: C 49.87; H 5.62; N 17.11. V: mp 265° C (from water). Found, %: C 42.40; H 5.13; N 24.56; H_2O 6.0. Calculated for $C_{10}H_{13}N_5O_4H_2O$, %: C 42.10; H 5.20; N 24.55; H_2O 6.3. ## REFERENCES - 1. V. B. Kalcheva, E. S. Golovchinskaya, KhGS [Chemistry of Heterocyclic Compounds], (in press). - 2. E. S. Golovchinskaya, Mokhammed Yasin Ebed, and E. S. Chaman, ZhOKh, 32, 4098, 1962. - 3. E. S. Chaman, A. A. Cherkasova, and E. S. Golovchinskaya, ZhOKh, 30, 1878, 1960. - 1 August 1966 Ordzhonikidze All-Union Chemical and Pharmaceutical Scientific Research Institute ## SOME REACTIONS OF PHOSPHORUS-CONTAINING HETEROCYCLES B. A. Arbuzov, A. O. Vizel, and K. M. Ivanovskaya Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 6, p. 1130, 1967 UDC 661.718.1+547.77 It has been reported previously that derivatives of dioxaphospholene [1] and oxaphospholene [2] react readily with water. The reaction, which is a saponification of a cyclic ester, ends with the formation of the corresponding acid, which contains a keto group in the organic part of the molecule. The reaction of the cyclic compounds mentioned with alcohols has not been studied. We have found [3] that derivatives of oxaphospholene readily react with alcohols on being heated, forming the corresponding esters of Esters of Ketophosphonic and Ketophosphinic Acids | Com-
pound | R | R' | Bp, °C
(pressure,
mm) | n _D ²⁰ | d4 ²⁰ | Empirical
formula | Found | | | | Calculated | | | | 180 | |----------------------|--|-------------|--|--------------------------------------|--------------------------------------|---|---|-----------------------|---|-------------------------|------------|----------------------|---|---|--------------------------------------| | | | | | | | | ်
န | н, % | P, % | MRD | C, % | н, % | ۳,
چ | MRD | Yield, | | II
III
IV
V | OCH ₃
OC ₄ H ₉ -n
C ₂ H ₅
C ₂ H ₅
C ₂ H ₅ | C₂H₅
CH₃ | 73—74 (0,04)
76—78 (0,02)
71—72 (0,1)
78—80 (0,07)
Mp.,
112—113 | 1.4467
1.4429
1.4640
1.4595 | 1.0896
1.0235
1.0638
1.0362 | C ₁₂ H ₂₅ O ₄ P
C ₂ H ₁₂ O ₃ P | 48.67
54.46
52.62
54.48
49,52 | 10,03
9,39
9,67 | 13.81
11,66
15,38
13.91
15,78 | 68,46
53,48
58,15 | | 9.53
9.29
9.61 | 13,94
11,72
15,02
14,06
16,11 | 54.64
68.49
53.52
58.14
192.18* | 65,8
41,6
71,6
30,8
89,0 | *Equivalent weight, found 192.10, calculated 192.18.